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With significant budget reductions, many “public” 
industries,  such as transportation and power generation 
are finding they must reexamine the way they do 
business.  With the increasing threat of outsourcing, 
those serious about maintaining their existence are 
looking more closely at totally new approaches that 
emphasize the efficient use of funds and labor resources 
with the goal of maintaining high performance.   Many 
are investigating computerized Decision Support 
Systems (DSS’s), often borrowing technologies 
developed for related private industries and tailoring 
them for new purposes.   
Unfortunately, most implementations fall short of 
expectations and several million dollars are usually spent 
before the failure is certain.  In addition,  the causes of 
failure are often still unknown when the system is finally 
unplugged. Specifically, this paper deals with the 
problematic issue of measuring success and/or 
sensitively monitoring an implementation in order to 
identify early trouble spots.  As will become clear,  
research methods from the social sciences can be 
successfully adapted for the purpose of measuring.  
Designed to unpack the “why” of human behavior and 
practice,  such methods can render more sensitive 
measures while at the same time make better use of 
increasingly detailed data made available by the DSS’s 
themselves. 
Specifically, this paper details a three-level analytic 
method for measuring a decision support implementation 
and identifying trouble early in the roll-out.  Originally 
developed for basic research on the development of 
expertise among users of DSS’s,  (e.g.,  DiBello,  1996; 
1996b, Chamberlain & DiBello, 1997) the approach has 
proven to increase the chances of identifying small – but 
eventually fatal – problems with the deployment, the 
design, or subtle user misuses.     The method  
incorporates: 1.  Domain-specific cognitive profiles of 
target users,   2.  Measures of user navigation through 

both legacy systems and the target DSS and ; 3.  Ways of 
tracking the  financial impact of the system at a level of 
detail normally not found among typical management 
reports.   There are a number of unique features of each 
of these  sub-methods.  For example, the cognitive 
profiles measure the similarity of the user’s spontaneous 
mental model of workflow to the underlying  logic  of 
the target DSS while at the same time measuring the 
lingering impact of legacy systems.   Therefore,   these 
profiles show movement  (or the lack of) between 
paradigms during implementation.   The user log 
analyses measure complexity of navigation  through 
DSS’s using system logs, and identify problems that 
would not be apparent by simply watching to see if users 
spend time at terminals.  The financial impact measures 
provide an alternative to the site’s usual measures while 
at the same time identifying lingering problem areas.  
This paper details each method in turn, and gives 
example data from actual sites.  The paper concludes by 
showing how the results of each sub-method can be 
linked together, showing, for example, how paradigm 
shifts in users are affecting financial performance of 
shops.  
 

UNDERSTANDING USERS WITH COGNITIVE 
PROBE INTERVIEWS 

 
One of profound features of Decision Support 
Technologies is that – in essence – they are actually 
computerized instantiations of formal theories with 
clearly defined relations between conceptual objects.   A 
consequence of this is that  they are idealized and rigid.   
In fact,  one of the complaints about DSS’s that they 
“assume a perfect world”,  and in fact,   they do.  
However,  talented users who understand the “real 
world” better than the computer does find ways to use 
the systems’ rigidity to their advantage.    For example,  
many use a DSS system as a constant for evaluating  real 
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world occurences;  e.g.,  if an MRP ( Manufacturing 
resource planning) system reliably predicts a steady lead 
time for a lot size of material to be processed in a metal 
press,   an unexpected variance with that prediction 
might alert workers that the machine itself is slowing 
down and developing mechanical difficulties.    
 
In order to use the system’s rigidity, however, -- as 
should be clear from the example above -- users must 
implicitly understand the formal theory represented by 
the DSS before they can do anything creative or even 
useful with the system.  Just as someone needs to 
understand the system of arabic numerals within the 
system of arithmetic before using either of them to make 
and balance a household budget,  a user must understand 
the formal theory of a DSS before he or she can 
creatively use it to change practice. This is not a new 
idea.  However,  the difficulty has been knowing how a 
user “knows” something.   The kind of knowing we are 
describing has been called by others  “intuitive 
expertise”  (e.g., Polyani 1986,  Dreyfus & Dreyfus 
1986,  Dreyfus 1997; Klein & Hoffman, 1993; Orasanu 
& Connolly 1993) and yet eludes easy measurement.   
For example,  many who perform well on written tests 
covering verbalized concepts about various systems are 
not effective or even competent users (DiBello & Glick, 
1992)   The kind of knowing that is required from 
innovative DSS users is not so much a quantitative 
difference in what is known about,  but rather  a 
qualitative difference in how the knowledge is mapped 
onto practice.   
 
Since we are interested in such levels of knowing,  we 
have designed domain specific “probe batteries”  that get 
at how a person is thinking within a given domain 
without relying on verbal report or even conscious 
awareness of preferred strategies.   
 
Discussions of the preparation and skill required to 
develop a probe battery are beyond the scope of this 
paper, but examples exist in the cognitive psychology 
literature  (e.g., DiBello, 1996; 1996b Lesgold 1993) .  
What follows here is a discussion of its basic features 
and value to a DSS implementation. 
 
The idea behind a probe battery is that one cannot really 
understand thinking as related in post hoc narrative.  
Rather,  thinking is best understood as an activity and 
must be observed in action.  Also,  knowledge cannot be 
understood in an historic vacuum or out of context 
(Olson 1994;   Spender, in press).    Therefore, a probe 
battery seeks to characterize an individual’s knowledge 
of both the guiding formal principles of the target DSS 
and either legacy technologies or practices (or both). In 
that sense,  the probe attempts to characterize an 
individual’s readiness for the paradigm shift needed to 
make the DSS implementation successful.  

 
The battery consists of a number of carefully designed 
“toy tasks” that can be successfully solved by either 
using old methods, or by using the logic and approach 
underlying the target DSS.  For example,  if the 
implementation involves a cycle based preventive 
maintenance system, the interviewees would be asked to 
look at histories and inspection reports and predict what 
problems are going to occur next with the equipment.  
The histories and inspection reports would contain 
information that could lead to identifying either 
“reactive” oriented problems (Chronic undiagnosed 
symptoms) or cyclical patterns of wear and tear that 
indicate a preventive repair is due soon.  The interviewee 
may notice only the indicators of chronic problem,  or 
only the indicators of cycles,  or notice both kinds of 
data.  In any case,  analysis of the data used and strategy 
for using it helps to identify the dominant problem 
solving paradigm of the interviewee.  The protocol is 
scored by counting the number of different strategies 
employed from each the legacy and target approach and 
comparing that list to a pre-determined checklist of all 
possible strategies for that task.  A proportional score is 
then calculated, indicating “how much” of the person’s 
approach is legacy oriented vs. How much is in line with 
the planned changes.  
 
For example, the chart below compares workers in 
various titles on their manufacturing planning 
approaches.  From previous research,  an “ideal” 
knowledge profile was identified and we wished to see 
which departments and job titles had skills most similar 
as to better plan system deployment and training .  
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When conducted on a statistically significant sample of 
individuals (about 40 or 50),   the probe results can also 
reveal the dominant paradigm of an entire workplace.  
Our work has shown that – in a very real sense – the 
results of probe batteries reveal more about the decision 
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culture of a workplace than they do about individuals per 
se.  That is,  workers in the same job title from the same 
workplace show significant homogeneity in their 
decision profiles.   
 
Because of this, we have found it useful to “pre-probe” 
and “post-probe” a sample of individuals to measure the 
change in workers’ thinking.  In fact, this method has 
been very useful to measure the impact of training. (See 
Chamberlain & DiBello 1997;  DiBello & Spender 1996 
for discussions and results of pre and post probes).     
 
MEASURING PERFORMANCE USING SYSTEM 

ARCHIVES 
 
There has been significant discussion that DSS’s don’t 
work unless a large number of workers  who are “close” 
to the work being done influence the data being entered.  
Various approaches have been used to ensure data 
integrity.  One of these – the use of data entry clerks to 
type in worker’s comments – has met with particularly 
disappointing results.   In a study of four sites (DiBello 
and Kindred,  in preparation) it was found that little or 
no correspondence existed between worker’s 
handwritten reports and their electronic counterparts.  In 
one site,  workers had noticed the lack of veracity in 
system records, and had stopped handing in accurate 
handwritten reports. Most striking, however,  is the lack 
of good methods for measuring workers’ use of the 
system and data integrity.   
 
We have found that a great wealth of information is 
contained in the transaction logs already built into most 
network resident systems.  In order to manage the traffic 
of logins and transactions,  handle billing (when network 
time is leased) and allocate user-specific access,  most 
systems literally log every transaction that takes place.  
In many cases, this basic logging function can be 
modified to collect specific information about each 
transaction,  such as functions used, queries made or 
specific field-dependent data entered.   A carefully 
thought-out analysis of these data can reveal much about 
how a system is being used, by whom, and in what areas 
of the workplace.   
 
For example,  for a site implementing MRPII,  we 
measured planners use of the “what if” simulation 
module to see if they were using it to make better 
decisions about master scheduling.  We reasoned that if 
the planners were using the system properly, they would 
access the simulation module frequently at the beginning 
of the month (when plans are modified using new sales 
orders)  and make fewer changes in the schedule 
throughout the month,  once a plan had been decided 
upon.  The problem at this site had been poor planning 
and frequent reactive changes to the planning 
spreadsheets.   We downloaded  information on the 

number of accesses to the simulation module by planners 
by week, for eight weeks.   We then downloaded 
transactions concerning changes in the schedule.  These 
data were summarized for each month, calculating the 
mean degree of change for each month, in days.  We 
found that both the number of changes and the extremity 
of the change decreased with increased use of the 
simulation module.   
 
Another example involves shop floor mechanics 
collecting repair data for a preventive maintenance 
system.  For this system,  data detail and accuracy are 
critical so that previously undocumented wear and tear 
cycles could be identified in a large fleet of public 
transportation vehicles.   In this site,  mechanics did their 
own data entry using terminals placed next to 
workbenches and vehicle lifts.  Very little or no 
handwritten records were kept.   After some analysis of 
the work practices,  we determined that the “component 
code” was the key to the system’s success.  For example,  
in an engine with hundreds of  parts,  indicating that the 
engine as a “component” has a problem is not helpful.  
We needed mechanics to specify the code or stock 
number for exact part within the engine or other major 
component.   One way we measured quality of input was 
by downloading all transactions in which a component is 
specified as having a problem.  Then,  the overall 
average component code frequency was measured for 
each person, for each month.  For example, we found 
that users who entered accurate data used any particular 
code less than two times a month, even though they 
averaged about 10 to 20 transactions a day.  Users who 
do not understand the importance of detail use the same 
few general codes over and over and, hence, their 
average frequency  was very high    
 
Obviously, as users increased their number of 
transactions, there was a limit to how much variability 
there could be in their codes (as a function of the finite 
number of components).  We controlled for this by 
calculating the ratio of individual average frequency to 
number of transactions.  As the user becomes more 
proficient at identifying problem parts at an appropriate 
level of detail,  the ratio should continue to increase,  
even if the mean frequency begins to stabilize or 
increase.   The chart below shows a well-running 
implementation.  Within the first 8 months,  users are 
showing a steadily increasing ratio of component 
frequency to number of transactions.   
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FINANCIAL PERFORMANCE MEASURES.  
 
The entire reason for investing in an expensive Decision 
Support system is often hard to justify if measures of 
financial performance are not sensitive enough to show 
short term impact.  Typically, DSS’s are being 
implemented in industries with notoriously poor records 
and the implementation is often the first attempt to 
document what is going on.  Again,  using the system’s 
own data (although not its pre-packaged reports)  in 
creative ways can show both short term improvement or 
– more importantly – developing problems.  Often it is 
just a matter of asking the right questions and 
understanding how the system collects data.   
 
For example,  at a northeastern public transportation site,  
one way to show short term impact was to show that the 
vehicles being maintained were making fewer trips to the 
shop and were, hence,  spending more time collecting 
rider’s fares.  There was no pre-created report for  doing 
this, but the system did record every work order created,  
by vehicle number and date.  Therefore, we were able to 
graphically represent the number of days on the road Vs 
days in the shop, for each vehicle, at each location and 
during each month.   
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Likewise,  we reasoned that if users were truly 
understanding preventive maintenance, they would soon 
realize that predicable  maintenance or preventive 
replacement can be coordinated in time, resulting in 
more work being done during each visit to the shop.  
Comparing the chart above to the chart below illustrates 
this point.  As can be seen, the same vehicles which 
visited the shop less frequently after implementation had 
as many or more work orders.  The difference is that 
these work orders were coordinated to be addressed 
during planned shop visits.  
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As can be seen, the total number of work orders actually 
increased, while the number of trips to the shop 
dramatically decreased for the same period of time.   The 
two charts below compare the relationship of number of 
trips to number of work orders for the same vehicles, 
before and after implementation. 
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The first shows that the number of trips were equal to or 
exceeded the number of work orders satisfied, 
suggesting that vehicles had to return to the shop 
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multiple times for the same work order, possibly because 
parts were not available for unplanned work.  The 
second chart shows that multiple jobs are being handled 
in a single trip, suggesting better planning and 
coordination.   
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To look at the effectiveness of the repairs – another way 
to examine the integrity of the information in the system 
– we examined mean distance between failures for the 
maintained equipment.  If the work orders created from 
system information are addressing actual problems,  
MDBF should go up.   
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MIDAS vs Non-MIDAS Depot

 MDBF

0

1000

2000

3000

4000

5000

6000

7000

8000

J
a
n
-
9
4

F
e
b
-
9
4

M
a
r
-
9
4

A
p
r
-
9
4

M
a
y
-
9
4

J
u
n
-
9
4

J
u
l
-
9
4

A
u
g
-
9
4

S
e
p
-
9
4

O
c
t
-
9
4

N
o
v
-
9
4

D
e
c
-
9
4

J
a
n
-
9
5

F
e
b
-
9
5

M
a
r
-
9
5

A
p
r
-
9
5

M
a
y
-
9
5

J
u
n
-
9
5

J
u
l
-
9
5

A
u
g
-
9
5

S
e
p
-
9
5

O
c
t
-
9
5

N
o
v
-
9
5

D
e
c
-
9
5

MONTH-YR

M
D
B
F

MIDAS
MDBF

Non-
MIDAS
MDBF

Non-
MIDAS
MDBF

MIDAS
MDBF

 
 

CONCLUSION 
 
As should be clear,  one of the weakest points in any 
implementation strategy – sensitive measurement – can 
be addressed by borrowing  the methods developed in 
the social sciences to characterize human behavior.   
Since the successful deployment of Decision support 
technology is mainly an issue of changing practice and 
shifting paradigms,  the adaptation of social science to 
assist technology implementation is a deceptively 
obvious match.  What remains is linking the results of 
various measures to each other and developing ways to 

diagnose at which level intervention is required when a 
technology implementation is not going well.   Although 
we have found ways to make meaningful links between 
measurable paradigm shifts and financial impact 
(Chamberlain & DiBello, 1997),   ways to use these links 
to diagnose trouble quickly are only now developing.   
For example,  in one site, user knowledge had undergone 
radical shifts (as shown in cognitive probe results) but 
workers  transferred new knowledge to work practice for 
only three weeks before returning to previous ways of 
working (as shown in system transactions).    Further 
research revealed that implicit “punishments” for 
innovative thinking were in place in the structure of 
foreman/worker relationships.  In this case we were able 
to intervene  (DiBello & Kindred 1995),  but more 
systematic ways of looking for links must be developed.   
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